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The Influence of Motion Paths and Assembly
Sequences on the Stability of Assemblies

Sourav Rakshit and Srinivas Akella, Member, IEEE

Abstract—In this paper, we present an approach for the stability
analysis of mechanical part disassembly considering part motion
in the presence of physical forces such as gravity and friction. Our
approach uses linear complementarity to analyze stability as parts
aremoved out of the assembly. As each part is removed from the as-
sembly along a specified path during disassembly, we compute the
contact forces between parts in the remaining assembly; positive
contact forces throughout the disassembly process imply the disas-
sembly sequence is stable (since the parts remain in contact with
one another). However, if the part that is being taken out induces
motion of other parts in the remaining subassembly, we conclude
the disassembly sequence is unstable. Thus, we are able to simulate
the entire disassembly considering physical forces and partmotion,
which has not previously been done. We then show the influence of
partmotion on stable disassembly. In contrast to prior work on dis-
assembly that has focused either on planning part motions based
on only geometric constraints, or on analyzing the stability of an
assembly without considering part motions, we explore the rela-
tion between partmotion and the selection of stable disassembly se-
quences in 2-D and 3-D. We establish conditions that characterize
path-dependent assemblies, where motion paths can play a signif-
icant role in stable disassembly. Since we track the motion of all
parts in an assembly, instability inducing motions can be identified
and prevented by introducing appropriate fixtures by selecting al-
ternative disassembly sequences or by changing the motion paths.
We extend the stability analysis for single part disassembly to sta-
bility analysis of subassembly disassembly. We additionally show
that in the presence of friction, assembly and disassembly can be
noninvertible.

Note to Practitioners—Maintaining the stability of an assembly
as assembly or disassembly proceeds is critical during product as-
sembly, repair, and maintenance. While fixtures can ensure sta-
bility, they add cost and restrict access for parts and tools.We show
that the stability of the assembly can depend on the paths taken by
the parts, and present an approach for selecting paths that ensure
stability from among the geometrically feasible paths. The main
application is in assembly and disassembly planning for reducing
the fixturing requirements and in planning assembly motions that
do not cause instability. The results will also be useful in designing
disassembly operations during maintenance or repair, when it may
not be possible to fixture all parts. The stability analysis can also
be used by assistive robots in domestic environments for tasks like

Manuscript received November 28, 2013; revised April 11, 2014; accepted
May 28, 2014. Date of publication August 21, 2014; date of current version
April 03, 2015. This work was supported in part by the National Science Foun-
dation under Awards CCF-0729161, IIS-1019160, and IIP-1266162. This paper
was recommended for publication by Associate Editor T. D. Murphey and Ed-
itor J. Wen upon evaluation of the reviewers' comments. (Corresponding au-
thor: Srinivas Akella.)
S. Rakshit is with the Department ofMechanical Engineering, Indian Institute

of Technology Madras, Chennai 600036, India (e-mail: srakshit@uncc.edu).
S. Akella is with the Department of Computer Science, University of North

Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail: s.akella@ieee.org).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASE.2014.2345569

stacking objects and for safe removal of collapsed structures after
disasters such as earthquakes.
Index Terms—Assembly planning, assembly sequence, motion

path, stability analysis.

I. INTRODUCTION

P RODUCT assembly is a labor-intensive and time-con-
suming process [35], [8]. Automated robotic assembly

is aimed at reducing human cost and time. There has been
significant research on several aspects of assembly automa-
tion including the development of algorithms for assembly
sequencing considering part geometry [36], grasping of objects
considering physical forces [21], [26], stability of subassem-
blies [23], [22], [24], and motion planning for part removal
[32], [14], [19]. The simplest assembly problem is one in which
there are only two hands, and the assembly sequence is mono-
tone, i.e., each part is moved directly to its final position in the
product without being placed in intermediate positions [36].
In this work, we consider monotone assembly of rigid parts
using two hands. A classical strategy for assembly planning
is assembly-by-disassembly [17]. This strategy is popular in
assembly planning since a product in its assembled state has
many more constraints than in its disassembled state; these
constraints reduce the search space for a planner. When the
parts are rigid and when only geometric constraints are con-
sidered, an inverted disassembly sequence leads to a feasible
assembly sequence. Thus, the terms assembly and disassembly
have been used interchangeably in the literature [36]. Note that
disassembly by itself is important in repair, maintenance, and
end-of-life processing [18].
We follow a simple definition of stability: A disassembly op-

eration is said to be stable, if apart from the part(s) being re-
moved, all other parts in the assembly stay in their respective
locations. We make the initial assumption that a stable disas-
sembly sequence when inverted will become a stable assembly
sequence. In our work the fixed support is considered as a hand,
so there is only one moving hand. The stability analysis we per-
form also has potential applications for robots in domestic en-
vironments, where tasks like stacking books, dishes, boxes, and
even blocks (e.g., in the game Jenga [34]) are common. It may
also be useful for autonomous construction and safe removal
of collapsed structures during rescue operations after disasters
such as earthquakes.
The focus of our work is the stability of the assembly in the

presence of physical forces as each part is taken out of the as-
sembly. We calculate the forces arising between the parts using
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linear complementarity [2], [31]. The part motions are selected
using the nondirectional blocking graph (NDBG) [36]. Our sta-
bility analysis is based on calculating the contact forces and
identifying relative part motion. The initiation of breaking of
contact in frictionless assemblies is reflected as a positive ac-
celeration at the contact points, which is complementary to the
contact force at those points. For assemblies with friction, the
relative motion is indicated by the sliding velocity. We simu-
late the motion of part(s) during disassembly, calculate the con-
tact forces and their complementary motions, and determine sta-
bility. Although the stability of assemblies has been analyzed
previously [6], [23], [22], [24], and such analysis has been used
to analyze the disassembly tree [25], the simulation of disas-
sembly considering both physical forces and motion has not
been previously addressed. Thus, our work can be incorporated
into disassembly simulation and disassembly motion planning
based on physical forces and constraints. Further, we demon-
strate that the stability of disassembly sequences depends not
only on the disassembly sequence, but also on the motion paths
taken by the parts. We identify conditions that characterize such
path-dependent assemblies. We show that for path-independent
disassemblies, it is sufficient to perform stability analysis at only
the nodes of the AND/OR assembly graph.We extend the stability
analysis for single part disassembly to stability analysis of sub-
assembly disassembly. Finally, we show that, in the presence of
friction, assembly and disassembly can be noninvertible.

II. RELATED WORK

There are two main areas of research related to our work: sta-
bility analysis and geometric analysis of assemblies. However,
there has not been much prior work uniting these two areas for
assembly planning.

A. Stability Analysis
Blum et al. [6] first analyzed the stability of rigid blocks. They

defined an assembly of rigid blocks as stable if and only if all
of the compressive contact forces between the blocks are posi-
tive and devised an algorithm similar to linear programming for
solving the set of contact forces in the assembly. Palmer [27]
investigated the computational complexity of stability of poly-
gons and gave definitions of guaranteed stability, potential in-
stability, and infinitesimal stability. Boneschanscher et al. [7]
extended the linear programming-based approach of stability
analysis to include insertion forces. Romney [30] presented a
method for planar assemblies to concurrently generate both an
assembly sequence and a fixture to hold intermediate subassem-
blies. In this sequence/fixture codesign problem, the fixtures
must stabilize the (sub)assemblies against gravity and the in-
sertion forces, while permitting insertion paths for the parts.
Mattikalli et al. [23], [22] developed linear programming-based
approaches for identifying the set of orientations under which
an assembly is stable in the presence of gravity, both with and
without friction. Mosemann et al. [24] developed a method sim-
ilar to Mattikalli et al. and used it to analyze the stability of the
subassemblies at each node of the AND/OR assembly graph [25].
Wolter and Trinkle [37] used a contact-force-based linear pro-
gramming formulation to find optimal location of fixels in an as-
sembly. Goldberg and Moradi [15] developed vertical assembly

plans for assembly without fixtures, with a minimalist motiva-
tion similar to ours. With the exception of [25], very little work
has used stability analysis systematically for the disassembly
process. Moreover, it focuses mainly on the static analysis of
the disassembly tree.
The notion of a stable equilibrium is closely related to force

closure and form closure in robotic grasping [21], [26] and fix-
ture design for a static assembly [9], [10]. Trinkle [33] formu-
lated a first-order stability criterion for grasped objects based
on linear programming. An assembly is first-order stable if all
kinematically possible virtual displacements of the system re-
sult in a strict positive increase in potential energy of the system.
First-order stability is equivalent to robust directional equilib-
rium for a system of rigid bodies and their fixtures, as formu-
lated by Baraff et al. [3]. Our definition of stability is equivalent
to directional equilibrium of Baraff et al. [3] and weak stability
of Pang and Trinkle [28], which are defined to hold for an as-
sembly if the contact forces that arise in response to an external
force exactly balance the external force and induce zero body
accelerations.
Stable transport of assemblies of parts without grasping has

been studied by Bernheisel and Lynch [4], [5], who analyzed
the stable transport of planar arrangements of parts by pushing
motions. They identify force balance conditions that guarantee
an assembly of parts stays assembled as it is pushed.

B. Geometric Analysis and Planning

For a concise overview of geometric assembly planning and
sequencing, see [16]. The AND/OR graph representation of as-
sembly sequences developed by de Mello and Sanderson [12]
enables enumeration of all possible assembly sequences for au-
tomated planning. The nondirectional blocking graph (NDBG)
is a subdivision of the space of all allowable motions of separa-
tion into a finite number of cells such that, within each cell, the
set of blocking relations between all pairs of parts remains fixed
[16]. The NDBG representation uses the geometry of the parts
in the assembly to efficiently determine the set of feasible mo-
tion directions for a part, thus reducing the combinatorial com-
plexity of disassembly sequencing [36]. The geometric infor-
mation in the NDBG together with the sequencing information
in an assembly AND/OR graph is then used to perform assembly
sequencing. Halperin et al. [17] developed a motion space ap-
proach to generalize the NDBG to more general part motions.
More recently, disassembly planning has been addressed as a

motion planning problem in the composite configuration space
of the individual parts by applying sampling-based motion plan-
ners for planning part removal paths for disassembly [32]. Tech-
niques have included sampling based on the geometry of reach-
able configurations. An RRT-based iterative planning approach
that gradually decreases the allowed amount of interpenetration
has been used for single part disassembly [14]. Le et al. [19] de-
scribe an RRT-based method for simultaneous disassembly se-
quencing and path planning; it can handle nonmonotone disas-
sembly sequences. While these motion planners generate paths
that avoid part interference, they do not consider any physical
constraints such as gravity, friction, etc.
Portions of the work in this paper previously appeared in [29].
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III. PROBLEM AND APPROACH

A. Motion Stability Problem

Given a geometrically feasible disassembly sequence and a
motion path for an assembly, the motion stability problem is to
identify whether the disassembly sequence and motion path are
stable.
To solve the motion stability problem, we consider each part

as it is removed from the assembly along a specified path and
perform stability analysis to check whether the static equilib-
rium conditions are satisfied along the path for all parts of the
assembly, other than the part being moved out. We declare a dis-
assembly sequence andmotion path to be stablewhen there is no
relative motion between parts (excluding the part being moved
by the gripper) along the path. Using this motion stability anal-
ysis, we can identify stable sequences and motion paths for dis-
assembly from a given set of geometrically feasible disassembly
sequences and motion paths for an assembly.
We make the following assumptions. We assume the as-

sembly consists of polygonal parts (in 2-D) or polyhedral parts
(in 3-D). We assume that each part that is moved out is held by
a gripper. The moving part is assumed to undergo quasistatic
motion with finite translations. There is perfect position control
of the gripper and, hence, of the part that it grasps. The gripper
does work only on the part that it holds and moves, except
when moving a subassembly. The weight of the moving part
is supported by the gripper, unless otherwise stated. When the
gripper does not support the part, we assume it applies forces
only along the motion path. Following the convention in the
assembly planning literature, we do not consider collisions of
the gripper with the assembly. We assume frictionless contact
unless otherwise stated.
We use linear complementarity [11] to detect whether and

when the assembly becomes unstable as each part is removed
from the assembly. If linear complementarity finds a solution,
i.e., all of the contact forces are non-negative and there is no rel-
ative motion between parts (excluding the part being moved by
the gripper), then the assembly state is considered stable. The
linear complementarity problem (LCP) proposed by Baraff [2]
for analysis of frictionless cases calculates the relative move-
ment in terms of the relative acceleration between the parts in
the assembly. According to Baraff's model, for every contact
point in the assembly, the normal contact acceleration and
the normal contact force form a complementary pair, i.e.,

, , and . This statement, which implies
that, when , , and when , , is rep-
resented succintly as . We can sum up the
complementarity conditions for all contact points, and since

and are linearly related [1], we have

(1)

where is a positive semidefinite matrix. All external
and body forces are grouped in the vector .
If friction is included, then, in addition to normal forces

and accelerations, there will be a tangential component of
force and acceleration at every contact point. When the static

friction force limit is reached at any contact point, the matrix
is no longer positive semidefinite. Baraff's method cannot

solve problems when is not positive semidefinite. The
Stewart–Trinkle model [31] gives a complementarity formu-
lation for multibody contact problems with dynamic friction
that can be solved using Lemke's algorithm [11]. Hence, we
use the Stewart–Trinkle model for disassembly problems with
friction. In the Stewart–Trinkle model, at each contact point ,
the complementary constraints are

(2)
(3)
(4)

where is the normal distance between the two parts at ,
is the normal component of the contact impulse, is the fric-
tion component of the contact impulse, is a vector of
ones, is the number of edges of the friction pyramid, is a
variable that approximates the magnitude of the sliding velocity,
is the Coulomb friction coefficient, is the dimension of the

configuration space, and is the friction contact
wrench matrix that transforms the generalized velocity
of the part along the tangential component of the friction cone.
For a two-dimensional problem ( ), at each contact point
, there are only two directions of the friction com-
ponent of the contact impulse, each perpendicular to the out-
ward contact normal . The friction contact wrench matrix

is , where is the vector from the
part centroid to contact point , and is the 2-D equivalent of
cross-product.
Using the Stewart–Trinkle model, we formulate the motion

path stability problem as a linear complementarity problem as
follows:

(5)

where superscript indicates value at time .
, , and
are the concatenated normal contact impulses,

friction impulses, and s, respectively, for all of the con-
tact points in the assembly, and ,

, ,
, and

.
is the concatenated mass matrix,

is the concatenated normal con-
tact wrench matrix where ,

is the concatenated friction wrench
matrix, , ,

, , ,
is the concatenated generalized velocity at time , and
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and are the concatenated body and external forces for all
of the parts.
After each time step , we update the position of the moving

part, and then use linear complementarity [(1) or (5)] to calcu-
late the contact forces and any relative motion (acceleration or
sliding velocity) of the parts in the assembly. Tangential acceler-
ations need to be checked for only those bodies in the assembly
that can move according to the NDBG of the assembly, ignoring
bodies that are blocked in the tangential direction. After ob-
taining the contact forces, we can check the existence of tan-
gential acceleration in a body by calculating the net force in the
tangential direction.

B. Simulation and Stability Analysis of Disassembly

We now describe the algorithm to perform stability analysis
at each stage of disassembly; it uses linear complementarity for
contact force computation, and a path planner to identify motion
paths for the parts that are consistent with the NDBG. We de-
scribe the approach for evaluating a disassembly sequence for
an assembly (see Algorithm 1).
Let be a complete assembly of parts with con-

figuration , be a disassembly se-
quence with parts numbered in their disassembly order, and

be the remaining assembly after the first parts
of the sequence have been removed. Given part at its cur-
rent configuration , the function MotionPath returns a geomet-
rically feasible path as a sequence of equal magnitude dis-
placement vectors for to move out of .
Each motion step is executed and the part is
moved for time with a unit velocity along . After
has moved to its updated position , the function LCPsolve

is called to solve the LCP problem of
(1) (for the frictionless case) or (5) (for the friction case) and
compute the contact forces. LCPsolve returns true (i.e., stable)
if none of the contact relative motions (accelerations for the
frictionless case and velocities for the friction case) are greater
than zero. If any of the contact relative motions are greater than
zero, LCPsolve returns false (i.e., unstable) and the simulation
is terminated.

Algorithm 1 Stability Analysis of a Disassembly Sequence

Input: Assembly , Disassembly Sequence

1: for do

2:

3: if then

4: return GEOMETRICALLY INFEASIBLE

5: end if

6: for do

7:

8:

9:

10: if then

11: return UNSTABLE

12: end if

13: end for

14: end for

15: return STABLE

IV. EXAMPLES

We now present a few examples to illustrate the approach.
For a specified disassembly sequence, the parts in the assembly
are moved along motion paths with directions consistent with
the NDBG. At each time step, we calculate the contact forces
between different bodies by linear complementarity. If at any
time during the simulation, the part that is being moved out by
the gripper induces a relative motion at any contact point in the
rest of the assembly, we conclude that the assembly is unstable.
Unless otherwise stated the gravitational acceleration is as-
sumed to be unity, mass density of the blocks is unity, and the
simulation time step is 1 second. We will refer to a point as
vertex if it is a vertex of the body or as a contact point if it
is the corresponding point on the mating body. We will depict
the block moved by the gripper in red in the figures. For sta-
bility analysis, we use ourMATLAB implementation of Baraff's
complementarity algorithm for the frictionless case, unless oth-
erwise stated, and for the case with friction, we use a MATLAB
interface to the LCPPATH solver [13].

A. Simple Example With Blocks

This example (Fig. 1) has a set of frictionless blocks arranged
such that if block C is lifted before block D, block B topples. We
use Baraff's complementarity method to analyze this. Consider
the disassembly sequence C-D-B-A, with vertical motion of C
(any direction in the upper halfplane above B is permitted by the
NDBG). As C is lifted up, we plot the contact forces, normalized
with respect to the weight of moving block C, in Fig. 2. At 0 s, all
the contact forces are positive. However, at 1 s, when block C is
detached from the rest of the assembly, acceleration at contact
point 4 is positive indicating that the rest of the assembly has
become unstable. A similar situation occurs when block C is
moved horizontally to the left or right. Thus, all disassembly
sequences starting with the removal of block C are unstable.
By similar analyses, we can show that all disassembly se-

quences that start with the removal of blocks A, B, or C are un-
stable. Now consider the sequence D-C-B-A. We show the con-
tact forces (normalized with respect to the weight of the block
B) in Fig. 3. As each block is lifted up vertically, the contact
forces for that particular block become zero. However all other
contact forces are positive indicating the remaining subassem-
blies in all cases are stable. From the complementarity formu-
lation, this implies that the contact accelerations are zero, i.e.,
none of the contacts are breaking. Hence, D-C-B-A is a stable
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Fig. 1. Simple blocks example: an arrangement of blocks in an equilibrium
configuration. The blocks are identified by alphabets and vertices by numbers.
Block E is the fixed table. Based on [6].

Fig. 2. Plot of contact forces (normalized by weight of the moving block C)
against time as block C is lifted up. As soon as C is lifted up, contact point 4
has positive acceleration indicating that the remaining assembly is unstable.

disassembly sequence and is in fact the only stable disassembly
sequence.

B. Example: Stable Disassembly With and Without Fixels

When disassembly sequences selected using only geometric
constraints lead to instability, we can use fixels (i.e., point fix-
tures) to constrain parts that become unstable as other parts are
removed. Using stability analysis, the parts that become un-
stable at the time of removal of other parts can be identified and
stabilized by fixels or alternative disassembly sequences can be
generated.
This example illustrates the use of fixels in maintaining sta-

bility of an assembly. Consider blocks A, B, and C on table D
(Fig. 4). Only block A can move vertically up according to the
NDBG. However, as soon as A is lifted up, B becomes unstable
[Fig. 5(a)], with rightward accelerations of vertices 9 and 12.
The instability in B when A is moved out can be prevented by
application of fixels at appropriate locations on B [Fig. 5(b)].
Fixel positioning can be optimized using existing methods, e.g.,
[37].

Fig. 3. Plot of contact forces for disassembly sequence D-C-B-A. -axis is
time, -axis is contact force normalized by the weight of block B. The forces
at the contact points of each block remain positive until that block is lifted. This
implies that the disassembly sequence is stable.

Fig. 4. Blocks A, B, and C rest on a frictionless base D.

V. EFFECT OF MOTION PATHS ON STABILITY
We now examine the question: Are part motion paths impor-

tant during disassembly and assembly? The stability analysis
that we have presented so far can alternatively be performed by
analyzing the stability of the subassemblies at each node of the
assembly sequence AND/OR graph, as in Mosemann et al. [25].
In our work, we simulate the process of disassembly by consid-
ering part motion. We next demonstrate that motion paths are
also important for determining stable disassembly sequences.
We show that instability can occur not only due to the order in
which parts are removed, but also due to the motion paths by
which they are removed.
We will call the class of problems where stable disassembly

depends on motion paths path-dependent disassembly prob-
lems. The complementary class of stable disassembly problems
where motion paths do not affect stability will be referred to
as path-independent disassembly problems. Next we present
both 2D and 3D examples to illustrate how stable disassembly
depends on the choice of the motion path.

A. Influence of Motion Path in 2D
Consider the task of disassembling blocks A, B, C, and D

from the part E on a fixed table (Fig. 6). This example, where the
blocks are constrained to move through the exits I–V in Fig. 6,
illustrates the effect of motion paths on stability. A and B can
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Fig. 5. Plot of contact forces as block A is lifted up vertically. -axis is time, -axis is contact force normalized by the weight of the moving block A. Note that
since there can be more than one normal at a contact vertex, we indicate the bodies between which the contact forces act in the legend of forces and accelerations.
(a) Without fixels: as soon as block A is lifted, block B becomes unstable. This is indicated by positive accelerations at vertices 9 and 12 (scaled by a factor of 10
and shown in red). (b) With fixels: since the preceding analysis indicates that B loses contact in the horizontal right direction, we put fixels on the right hand free
face of B at vertex 11 and midway between vertices 11 and 10 (as shown in the bottom figures). Now, when A is lifted up, B stays in position, and none of the
contact vertices have positive accelerations.

Fig. 6. Example to illustrate the effect of motion paths on stability. A, B, C,
and D are movable frictionless blocks resting on a nonfixed body E that rests on
a table (colored grey). The exits are numbered using Roman numerals.

move out through exit I, whereas C and D can move out through
exits I–V. The shoulders on the rim of the cavity holding A and
B prevent C and D from contacting A when exiting through I.
All of the blocks are frictionless. The weight of the moving part
is not supported by the gripper unless the part itself becomes
unstable.
Since this example is symmetric about the vertical axis, we

analyze the effect of the motion of block C to illustrate the in-
fluence of motion paths (i.e., choice of exits) on the stability of
the assembly. C has geometrically feasible paths out of the as-
sembly through any of its three nearest exits I, II, and III.
We first illustrate the influence of motion paths on stability.

Consider the removal of C through exit III. As C is moved to the
left through the passage leading to exits II and III, the contact
force at vertex 17 increases and that at 18 decreases (Fig. 7) to

Fig. 7. Plot of contact force normalized with respect to the weight of C, and ac-
celeration versus time. When C is moved to the left and lifted up to exit through
II at 25 s, no instability is induced. However, when block C is moved to the
extreme left towards exit III, at 29 s, the rest of the assembly becomes unstable,
as indicated by positive acceleration at vertex 18.

counterbalance the increasing moment produced by the weight
of C. At 25 s, when C is directly below exit II, it can be moved
up towards exit II without instability. However, at 29 s, when C
is at exit III, the assembly becomes unstable. This is indicated
by positive acceleration at vertex 18.
When C is lifted up and moved towards exit I, no instability

is induced in the assembly. Hence, for disassembly sequences
that begin with the removal of C, the first step in the disassembly
sequence is stable when C exits through I and II, and not through
exit III. A similar situation occurs with D.
Next, we illustrate the interplay of motion paths and assembly

sequences in maintaining stability. Consider removal of A first,
followed by C. At 25 s, when C is positioned to exit through
II [Fig. 8(a)], the assembly becomes unstable due to positive
acceleration at vertex 18. Hence C cannot exit either through
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Fig. 8. Interplay of assembly sequence and motion paths. -axis shows the contact force normalized by the weight of C, and acceleration, and -axis is time. (a)
Block A is first moved out through center exit I. C is then moved to the left. At 25 s, before C is in position to exit through II, the assembly becomes unstable. Thus,
when A is removed first, C cannot exit through either exit II or III. (b) A is moved out first and then C is moved to exit I. In this case the assembly remains stable.

TABLE I
STABILITY ANALYSIS RESULTS FOR DIFFERENT SEQUENCE AND MOTION PATH
COMBINATIONS FOR THE ASSEMBLY OF FIG. 6. THE PATHS (INDICATED BY
EXITS) FOR PARTS A, B, AND C ARE LISTED AS ORDERED TRIPLES IN THE

ORDER OF THE SEQUENCE

II or III when A has been moved out. When C is lifted up and
moved to the right towards exit I [Fig. 8(b)], C can be moved out
through I at 18 s by the gripper [lower right hand figure of the
assembly in Fig. 8(b)]. Thus when A is absent, C can be moved
out stably only through exit I.
A similar analysis shows that removal of C after both A and

B have been removed always leads to instability. We summa-
rize the stability analysis results for sequence and motion path
dependence in Table I. The motion path dependence for the dis-
assembly of D is symmetric to that of C.

B. Influence of Motion Path in 3-D

We now consider a 3-D example to show that the LCP calcu-
lations for stability analysis can be extended to 3-D assemblies
as well. Fig. 9(a) shows an assembly consisting of the friction-
less blocks A, B, and C resting on a fixed support (table). Ge-
ometrically feasible disassembly paths exist for all the blocks.
However, it is easy to see that if B is taken out first then both
A and C will fall down. Hence, we only consider the disas-
sembly sequences A-C-B and C-A-B for stability analysis. This
example was solved using the LCPPATH solver [13].
When A is lifted up, the weight of C causes B to topple;

this is manifested by positive accelerations at vertices 9 and 12
(Fig. 10). Thus, A-C-B is an unstable disassembly sequence.
Next consider C-A-B. To illustrate the effect of motion path,
we consider two paths for the removal of C, one along and
the other along the direction in Fig. 9(a). In both cases, the

gripper supports the weight of C to the extent necessary to pre-
vent C from falling down. Fig. 11 shows the normalized con-
tact forces (with respect to the weight of C) when C is moved
along the direction. Note that the contact forces at 9 and
10 increase and at 11 and 12 decrease as C is moved in the
direction. At 12 s, the assembly becomes unstable and we see
positive accelerations at 11 and 12.
Next consider moving C in the direction. The support

polygon 13–14–15–16 of the gripper prevents C from toppling
as the downward projection of the centroid of C moves outside
the contact polygon 5–6–7–8 [Fig. 12(b)]. The contact forces
are shown in Fig. 13. There are no positive accelerations at the
contact points, which implies stability. As C is moved in the

direction, the variation in load over B is manifested by the
decrease in the contact forces at 9 and 12 and the increase in
the contact forces at 10 and 11. The edge 13–16 of the support
bears a higher fraction of the weight of C than the edge 14–15.
The load on B through the edge 5–8 stays constant until the end
(25 s) when edges 6–7 and 5–8 merge.
Thus we have shown using stability analysis that the disas-

sembly sequence A-C-B is unstable under gravity, and the dis-
assembly sequence C-A-B is path-dependent.

VI. CHARACTERIZATION OF MOTION PATH DEPENDENCE

To characterize motion path dependence, we establish con-
ditions for stability and instability of frictionless disassembly
problems. These provide a way to identify potential instability
even without performing a stability analysis along the (dis)as-
sembly paths. The results below are stated in the context of
assembly stability as one part is removed. Let the part being
grasped and moved by the gripper be , the assembly including

be , and the remainder of the assembly without be ,
where .
Proposition 1: If is unstable, then all motion paths for the

disassembly of from the assembly are unstable.
Proof: All motion paths for disassembly of part ulti-

mately lead to the removal of from assembly . Irrespective
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Fig. 9. (a) Assembly consisting of frictionless blocks A, B, and C. (b) Wireframe view of A, B, and C showing the contact surfaces. The contact polygons between
the blocks where contact forces occur are shown using different colors and numbered with Roman numerals. For example, the contact polygon between A and B
is I with contact vertices 1, 2, 3, and 4.

Fig. 10. A is lifted up from the assembly of Fig. 9. The contact forces are num-
bered according to the vertices of the contacting surfaces in Fig. 9(b). -axis
represents time. -axis represents the normalized contact forces with respect to
the weight of A, and contact accelerations. When A is lifted up, positive accel-
erations at vertices 9 and 12 indicate the remaining assembly is unstable.

of the motion path, the removal of is equivalent to the de-
tachment of from assembly . Hence, if detachment of a part
from the assembly leads to instability, all motion paths will lead
to instability.
Fig. 14 illustrates the proposition with an example.
Proposition 2: A sufficient condition for motion path inde-

pendence in a disassembly problem is that the weight of the
moving part is fully supported by the gripper.

Proof: Stability of an assembly depends on the contact
forces between the mating parts. If the weight of part is fully
supported by the gripper, then will not exert any contact force
on (under our assumptions in Section III-A). The situation is
identical to the case when is not part of . Hence, motion
paths cannot affect stability if the part's weight is fully supported
by the gripper.

Fig. 11. Plot of the normalized contact forces and accelerations versus time
when C is moved horizontally in the direction (Fig. 9(a)). The contact forces
are normalized with respect to the weight of C. At 12 s the whole assembly be-
comes unstable and vertices 11 and 12 lose contact with the table. Accelerations
at contact points 11 and 12 are shown magnified by a factor of 100. Top views
of assembly shown at bottom.

The contrapositive of Proposition 2 is that if the disassembly
problem has path dependence, the moving part is not fully
supported by the gripper. Proposition 2 along with the fact that
the gripper must fully support whenmoving it vertically, leads
to the following result.
Corollary 1: Part movement only in or opposite to the di-

rection of gravity will not cause assembly instability due to the
motion path.
We next identify conditions under which instability can occur

when a part is moved while not being fully supported by the
gripper. (See Figs. 15 and 16 for stable and unstable examples.)
We assume is moving along a planar surface in the direction
, and that the assembly rests on a horizontal surface. We
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Fig. 12. C is moved in direction. To prevent toppling of C, the front end of C is supported by the gripper. (a) C in an intermediate position with the support
of the gripper G at the leading end. (b) The wireframe diagram of the blocks with the contact polygons. The contact polygon between C and the gripper support is
indicated by vertices 13, 14, 15, and 16.

Fig. 13. Plot of the normalized contact forces versus time when C is supported
by the gripper and moved in direction. The contact forces are normalized
with respect to the weight of C. The assembly stays stable throughout the motion
path.

Fig. 14. Staircase of blocks supported by the block P under the topmost block.
When P is moved out in any geometrically feasible direction from under the
staircase, the staircase will no longer be stable.

also assume that the contact polygon has contiguous line con-
tact (in the 2-D case) or surface contact (in the 3-D case) with
the horizontal support surface. For polyhedral parts that are in
contact with one another, the contact polygon is the boundary
of the region of contact.

Fig. 15. Stable example. Part can move along its support surface without the
assembly becoming unstable.

Fig. 16. Unstable example. Instability can occur when part moves along a
surface at a sufficiently large distance from a sufficiently narrow base of support.

Proposition 3: If the maximum distance between the
center of mass of as it moves on its supporting planar surface
and the vertices of the contact polygon on the horizontal table
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along the projected motion direction is sufficiently larger than
the maximum distance between vertices of the contact
polygon on the horizontal table along the projected motion
direction, instability will occur.

Proof: Let the projection of the motion direction on the
horizontal table be the projected motion direction . We project
the assembly on a plane perpendicular to the horizontal table
and parallel to . In 2-D, is parallel to the line representing the
table, and is the plane in which the assembly lies. Let the part
in contact with the table be . Let be
the set of vertices of the contact polygon of on the table. We
locate the origin at the vertex in farthest from the centroid
of along , the -axis along , the -axis along the upward
normal to the table in the plane , and the -axis by the right
hand rule. So when moves along , the moment due to the
contact forces will only change about the -axis.
Let be the mass of and be the -coordinate of

the center of mass (COM) of . Let be the mass of the
remainder of the assembly and be the -coordinate of
the COM of . Let be the -coordinates
of . Let .
Let be the net force along the -direction and be the net
moment along the -direction caused by the contact forces from
the horizontal table. Considering equilibrium of forces along the
-direction and moments along the -direction

(6)

(7)

From (7), we can write

(8)

As moves along , is constant while the
magnitude of increases; the magnitude of in-
creases to maintain equilibrium. However, the maximum value
that can reach is , which is constant for the assembly.
If the polygonal surface on which moves is such that the pro-
jected distance of its farthest vertex from the origin along
the -direction is much larger than , then can move suf-
ficiently far from such that , and (8) is no longer
satisfied. This condition will lead to instability.
We now illustrate the above proposition with respect to the

presented 2-D and 3-D examples. In the 2-D example (Fig. 6),
the horizontal projection of the base is the length of the edge be-
tween vertices 17 and 18, which is smaller than the horizontal
projection of the top surface over which C moves. Hence, the
moment arm of C can be much larger than the moment arm of
the contact forces from the horizontal table, i.e., the length of the
edge 17–18. The instability (Fig. 7) is induced by the increasing
moment as C moves to the left. The increasing moment eventu-
ally makes the contact force decrease to zero at vertex 18, after
which instability is induced.
In the 3D example, note that the horizontal projection of the

base along the motion direction along the negative -axis (the

Fig. 17. Example for disassembly of subassemblies. Frictionless blocks A, B,
C, and D rest on a fixed support. The vertices relevant for the contact forces are
shown. As removal of individual parts leads to instability, is the
only stable subassembly sequence for disassembly.

edge 10–11 in Fig. 9), is smaller than the horizontal projection
of the top surface of B along the same direction (edge 2–3). In
this case, when C is moved in the direction, the instability is
induced due to the increasing difference between contact forces
at {9,10} and {11,12} to counterbalance the moment due to the
weight of C. Note that if the weight of is fully supported by
the gripper, then is zero in (8), and the equations
of static equilibrium are satisfied for all paths, consistent with
Proposition 2.
We use linear complementarity to perform stability analysis at

discrete configurations as parts are moved out of the assembly.
We ask the question: Given that at two discrete configurations
the assembly is stable, when can we guarantee that the assembly
is stable for all configurations between those two configura-
tions? We prove that if disassembly is path independent as de-
fined in Section V (for example, when the part is supported by
the gripper), the assembly will be stable at all configurations be-
tween a pair of stable start and end configurations.
Proposition 4: For path-independent disassembly, if the as-

sembly at any two configurations of a path is stable as part
is moved, then it is stable at all configurations along the path

between the two configurations.
Proof: Let , , and be three different configurations of

the assembly along a path for , with being an interme-
diate configuration between and as is moved out. Let
and denote the potential energy of and respectively at a
configuration . Let and be stable configurations, and assume
the intermediate configuration is unstable. This implies that at
configuration , some part(s) in will begin to move and gain
kinetic energy. Since the gripper does work on only by our
assumptions, the gain in kinetic energy of part(s) in will lead
to a decrease in potential energy of at , i.e., . The parts at
the configuration that are not in equilibrium will move to new
equilibrium states with lower potential energy. Since all parts
other than are in their unchanged locations at configurations
and , therefore . However the gripper does

work only on , and hence it cannot do work and increase the
potential energy of the parts that have moved into lower poten-
tial energy states. Hence, for all configurations at and after on
the path, the potential energy of will be less than or equal to

. Since lies after , therefore, . But this directly
contradicts our assumption that . Therefore
must be a stable configuration.
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Fig. 18. Plot of normalized force versus time for disassembly of the assembly of Fig. 17. All forces are normalized with respect to the weight of A. (a) B is moved
to the left. At 10 s, A becomes unstable, as shown by positive accelerations at contact points 7, 33 and 38. (b) Subassembly A-B is moved to the left. The gripper
grasps and moves A, which pushes B to the left. The disassembly is stable.

Corollary 2: For the case of path-independent disassembly,
checking for stability at the nodes of the AND/OR graph of the
disassembly tree is sufficient to verify stable disassembly se-
quences.

Proof: For path-independent disassembly, it follows from
Proposition 4 that if the two configurations that correspond to
the state of the assembly with and without the part respec-
tively are stable, then will be stable at all configurations while
is being disassembled. Thus for the case of path-independent

disassembly, checking stability at the nodes of the AND/OR
graph of the disassembly tree is sufficient to verify stable disas-
sembly sequences.

VII. DISASSEMBLY OF SUBASSEMBLIES

So far we have applied stability analysis to the case of single
part disassembly. However, the efficiency of disassembly can
be increased by simultaneous disassembly of multiple parts as
subassemblies. In some cases, disassembly of subassemblies
may be the only stable disassembly process. We present an ex-
ample to illustrate that stability analysis can also help in selec-
tion of stable subassemblies. Fig. 17 shows four blocks A, B,
C, and D forming an assembly. There is no friction between the
blocks, and between the blocks and the support. For two handed
disassembly, the possible subassemblies for disassembly are:

, , , and . Re-
moval of any single part from the assembly results in instability.
A or C cannot be lifted up independently without causing in-
stability, and have to be held together and lifted simultaneously
for stable disassembly. B and D can be moved sideways, but the
motion of either leads to instability. Fig. 18(a) shows the con-
tact forces and the accelerations leading to instability when B is
moved to the left by the gripper. After B has moved to the left,
at 10 s, A becomes unstable [shown by contact accelerations at
vertices 7, 33 and 38 in Fig. 18(a)].
On the other hand, when A is moved to the left, it pushes B

along with it, and the disassembly is stable. The contact forces
are shown in Fig. 18(b). A can then be stably disassembled from
B, and similarly C can be stably disassembled from D. Thus, the

Fig. 19. Noninvertible disassembly example. The blocks can be disassembled
either by lifting from the top (invertibly) or by moving horizontally (noninvert-
ibly). The friction coefficients between different surfaces are shown.

stable disassembly of the example shown in Fig. 17 can only be
executed by considering subassemblies.

VIII. NONINVERTIBILITY OF ASSEMBLY AND DISASSEMBLY

When only geometric constraints are considered, a
two-handed monotone disassembly can be inverted for as-
sembly [17]. However, when physical forces are considered, a
two-handed monotone assembly and disassembly might not be
invertible. Although this has been previously noted [20], [17],
we are not aware of a prior exploration of this issue based on
simulation. We construct a simple example to illustrate how
a physical force, i.e., friction, may lead to noninvertibility of
assembly and disassembly. The assembly consists of two rigid
blocks A and B (Fig. 19) that can be disassembled either by
moving vertically, or by moving horizontally. The disassembly
sequence is A-B, and the assembly sequence is B-A. In the
vertical direction, assembly and disassembly are invertible.
Let us now consider disassembly when A is moved out to the

right.We select the coefficients of friction between different sur-
faces as shown in Fig. 19, that is, is 0.2 between A and B, 0.05
between B and its support surface, and zero between all other
surfaces. The weight of each block is one unit. The complemen-
tarity conditions for this system are given by (5), and we use the
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Fig. 20. Plot of normal contact and friction impulses when A is moved to the
right, normalized by the normal impulse of A. The subscripts and indicate
the normal contact impulses and friction impulses. The sliding velocity between
A and B is and that between B and the base is .

LCPPATH solver to calculate the forces between different parts
in the assembly (Fig. 20). When a force high enough to move
A to the right is applied, it begins to slide and drags B along
with it due to imbalance of friction forces between the top and
bottom surfaces of B. Since movement of A induces movement
in B, the disassembly sequence is unstable. If we invert this dis-
assembly sequence, then the assembly sequence is B-A. When
A is inserted horizontally over B from the right, the sliding mo-
tion of B is prevented by the left wall, and hence it is stable.
Thus, when the horizontal path is selected, assembly B-A and
disassembly A-B are not invertible.

IX. CONCLUSION
The focus of this paper is the influence of part motion and

assembly sequence on assembly stability. Given this goal, we
go beyond the prior approach of performing a static analysis of
the disassembly tree. We instead use linear complementarity to
perform the stability analysis at each step of motion in the disas-
sembly process as parts are removed sequentially. We showed
that disassembly sequences that are consistent with only geo-
metric contraints may be infeasible in the presence of gravity or
friction. Furthermore, stability analysis can be used to identify
and prevent instability inducingmotions by introducing fixtures,
by selecting alternative motion paths, or by alternative disas-
sembly sequences. Previously, only the disassembly sequence
had been shown to be important for stable disassembly. We
have shown that not only the disassembly sequence, but the mo-
tion paths of the parts also can affect the stability of the disas-
sembly process. We explored the interplay of motion path and
sequence for both 2-D and 3-D examples. We further proved
conditions for motion path dependence in disassembly prob-
lems. We additionally proved that our LCP based stability anal-
ysis and the prior AND/OR graph based static stability analysis
[25] yield the same result for path-independent disassemblies.
We then extended stability analysis of single part disassembly
to stability analysis of subassemblies. We also showed that as-
sembly and disassembly, invertible when only geometric con-
straints are considered, can become noninvertible in the pres-
ence of friction.
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